U.S. Department of Energy

Lawrence
Livermore
National
Laboratory

N=""

SafePatch

M. Kelley and S. Elko

October 1, 2000

Approved for public release; further dissemination unlimited

UCRL-ID-141365

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

Work performed under the auspices of the U. S. Department of Energy by the University of California
Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information
P.O. Box 62, Oak Ridge, TN 37831
Prices available from (423) 576-8401
http://apollo.osti.gov/bridge/

Auvailable to the public from the
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd.,
Springfield, VA 22161
http://www.ntis.gov/

OR
Lawrence Livermore National Laboratory

Technical Information Department’s Digital Library
http://www.lInl.gov/tid/Library.html

SafePatch

Lawrence Livermore National Laboratory
PO Box 808 L-303
Livermore, CA 94551

October 2000
UCRL-ID-141365

Abstract

Authenticatingand upgradingsystemsoftwareplays a critical role in information security, yet
practical tools for assessingand installing software are lacking in today’s marketplace. The
SafePatchtool provides the mechanism of performincautomated analysis, notification,
distribution, andinstallation of securitypatchesand relatedsoftware to network-based computer
systems in arendor-independeriishion. SafePatchssists in the authentication sbftware by
comparing the system’s objects with the patch’s objects. SafeRdltanonitor vendor'ssites to
determinewhen new patcheare released andill upgradesystemsoftware on targesystems
automatically.This paper describes the design of SafePatch, motivations behind the andj¢ioe
advantages of SafePatch over existing tools.

Keywords: security, distributed, software management

Introduction

A serious threat to information resources is the inability to determinenaimdain aknown

level of trust in operating systersoftware. Thisthreat can be minimized gystems are
properly configured, usthe latessoftware,and have the recommended security patches
installed. Howeverthe timeand techniques required to assess and install recommended
security patches osystems isconsiderable and too often neglected. This situation is
further complicated by the fact thatendors have theirown patch distribution and
installation process. Thouglsome vendors provide tools to assist witle installation
processthese “solutions” (self-installingatchesjnstallation utilities) fail in threecritical

ways: 1)the targesystem is noactually examined; 2) thegolutionsare vendor specific;

and 3) they operate on a single host as opposed to a multi-host networked solution.

The SafePatch tool (formally referred 8SDS (Secure SoftwarBistribution System))
providesautomated analysis, notificatiodistribution, andnstallation of security patches
and related software to network-based compggstems in a vendor-independésshion.
This allows network administrators to query, maintain, and updredftwareintegrity
of hundreds ofndividual systems from &entral pointhrough arautomatedneans.This
centralized approach provides the following services for each targeted system:

* Rapid system software “trust” determination.
* Automated notification of new vendor security patches.
* Automated determination of patch applicability.

IOWAC 2001.008 1

* Automated installation of security patches and critical system software.
» Ability to “back-out” installed patches, restoring a system’s previous state.
» Collection of site-wide software statistics or metrics on patch status.

The process SafePatalses toauthenticate theoftware on a system imore reliable and
secure than other vendor-specifonls. SafePatch compares the targgstem’s objects
with objects fromthe patches to determinéhat isactually installecand what needs to be
installed. This approach ensurascuratereporting of a system’patch status. Italso
allows SafePatch to identify those objetttat donot belong to either the originalystem
distribution or to any released patches.

Motivation

System software playsaentral role in informatiosecurity. Most technological methods

for securing system resourca® critically dependentponthe system softwareDefining

access control lists (ACLSs), properly setting up user and group accounts, and configuration
of network services is uselesstife softwarethat is supposed to benforcing these
parameters are not performing what is expected. Short of contritienghysical access to

a system, assessirand maintaining the integrity ofystem software in a networked
environment is the first step in information security.

System software is constantthanging,making it difficult to maintain the integrity of a
system.Often times, system software is security-flawed straight outhefbox. Major
network-wide assaults, such #® notorious 1988nternet Worm attack, as well as a
history of less publicized attacks, exploit these known security flaws tallgdtinaccess to
systems. To their credit, vendaee often quick tassue securitypatchesfor vulnerable
system files. Howevervenwhen vendors issugatches to fix &nown vulnerability, a
new releasanay inadvertently introduce further vulnerabilities into #estem. This is
common in largesoftware companies becaube teams that createw releaseare often
different than the teams thateate thesoftware patchesThe multiplicity of security
patchesgcouple with differingversions ofthe operatingsystem,significantly complicates
the software authentication effort.

Even if systensoftware was certdibly “clean”, softwareauthenticatiorefforts must also

be concerned withthe possibility of tamperingduring episodes of weak security
management. A common method of compromising software security is to use a foothold on
the systemd.g.,an unprotected user account) to modify key system files and compromise
the system's defenses. Trojan horses are an example of this style of attack.

Vendors are aware of these issues and there is a push toward sughi@ygastomers with
“self-installing” patches or similasoftwareinstallation toassist withthe maintenance of
software. Howeverthese toolsare highly vendor specific andary wildly in their
implementatiorand effectivenesslhe tools we have encountereiffer from acommon
security flaw; they attempt to keep track of patches they have installed by builghiatgta
database’file. These toolscan be easily fooled into reportingrroneousinformation
because they make nattempt to survey the existing system files using secure
cryptographic hashes ewven ordinary checksums to ascertain whatctsially installed.
For example, assume a patch to fix a particular vulnerability has been installed using such a
tool. Subsequently, amtruder replaces the fixed binawith a Trojan or older flawed
version. Using a vendor tool tieterminewhat is installed orthe systemmay indicate the
patch is already installed because the tool simaphsultsthe “patchdatabase”. Solutions

IOWAC 2001.008 2

that rely on a database are unreliable and unacceptable for determining the level of “trust” in
operating system software.

Additionally, existing tools do not addretge problem of maintenance irhaterogeneous
network environment. In an environment whéaege mixtures of vendosystems are
employedthe routine maintenance ebftware versions angatches is an administrative
nightmare. Learning twmperate and manage omendor’'s set of software opatch
managementools is gruelingenough,let alone to do thigor all the flavors of Unix and
master their operationahanuals. Includingother popular operatingystems further
complicates the maintenantask evermore. Isthere anywonder whythe installation of
patches is to often neglected?

Software managementools are very much needed tsupport the assessment and
authentication of system software on a network as well as installing and upgrading system
software. Wouldn't it be nice to know exactly which of your 250 Unix syst@mgatched
up-to-date, whicharenot, and what patcheare neededbr eachsystem? Sadly, there are
many organizations where an administrato2%0 systemsould not determinghis in a
month’s time, and certainly not in a manner that involved the actual examination of installed
binary files. However,SafePatch enables an administrator to produce this information
within hours of the request and will do so dxstually examining the filegresent on these
systems.

How much trustdoes a new networ&dministrator place in the computgystemshe/she
just inherited?How much trustdoes anadministrator place in anetwork recently
experiencingsuspiciousactivity? A responsiblealternative to full network-widesystem
authenticatiorwould be to shuthe machineslown for afull re-install of their operating
systems, along with the latest complement of security patchescduie represeniveeks
of service disruption, and the level of assurance it prowdésend to dwindle over time.
More often thannot, this simply doesn’tget done. Again,this is why a software
management tool supporting software authentication is needed.

A softwaremanagement todhould also support software-authentication on a regular

basis, commensurate in frequency wtik value of theéesources beingraintained on the
systems.The SafePatch tooprovides system administrators with a fast and highly
automated method to authenticajestem softwaregetermine security patckersions and

detect instances of subsequent tampering. In addition, SafePatch provides a convenient and
secure means for automating the installation of required security patchedag@dsystem
software. Information security demands this capability at its foundation.

SafePatch Architecture

A software management toainust be capable of 1gollecting patches, 2) determining
which patcheshould be ohave been applied tosystem and 3) installing amabssibly
backing outpatches. Patchesan be collectedrom most vendors by downloadirtgem
directly fromthe vendor’s ftp sites. Taollect the latesteleasesthese ftp sites must be
monitored on a regular basis.

Once thepatches arelownloaded tahe localsystem, a softwarenanagement tool must
determinewhich patcheshould be ohave been applied to system. This ione of the
most difficult tasks toautomate in asoftware managementool. Each patchmust be
interpreted to determine the operatisgstem type, versiomand architecture thgatch
applies to;how much memory andisk space is needed to install the patch; dependencies
on other layereghroducts omatches; and which files and directore® affected by the
installation of a patch. To determine which patciresinstalled on aystem,existing files

IOWAC 2001.008 3

on a system must be compared with files containeckach patch. This process is
commonly accomplished by manually reviewing a text file associated with each patch.

If the patch is applicable to tlsystem,then thesoftwaremanagement tool can install the
patch, which usuallyentails following a set of instructions provided witie patch or
executing ascript. Sometimes the patatioesn’t work asadvertised or it interferes with

other applications on the system, so the software management tool must also permit patches
to be backed-out. Backing-out a patch is similar to the installation of a patcha(set of
instructions to follow or a script).

SafePatch largely automates tls®ftware managementtasks describedabove. It
accomplishes thestasks through twoprimary software componentshe SafePatch
CommandCenterand theSafePatchAgent Figure 1 illustrates these components along
with their interaction withthe vendor's ftp sites and other network-basedmputer
systems.

The SafePatch Command Center isaitralservice and resides on a single comptitat
interacts with severahetwork-based computesystems. The network-basedcomputer
systems serviced the SafePatch Command Center are referred to as &ysfeims or
Agents. The Command Center is responsible for monitoring a vendor’s ftp site on a regular
basis and collecting newly released patches. The SafePatch administrator can specify which
vendor sites are to be monitored and which filesdleect €.g, patches, readme, etc). In
addition to acquiring and saving the patches themselves, each patch is procgesethte

a vendor neutral machine-readafile. These vendor neutral files are referred to @ech
specifications and contain informatiorsuch asthe operatingsystem type, version, and
architecture as well as the permissions awiership for each file and directory
manipulated by th@atch. A cryptographic checksum feach file isalso included in the

patch specification to be used fde identification during the evaluatiorprocess described
below. A patch specification file is built for each collected patch. By maintaintognalete
history ofall patches, SafePatatan determinavhat filesare installed on aystem and
whether they are up-to-date. It is important for SafePatch to callgEtchrevisionssince
vendors typically post only the latestvision of a patch. Eventually we hofetvendors

will adopt a standard patch format or provide an adjunct for all of their patches (new as well
as old patches).

IOWAC 2001.008 4

Vendor VVendor Vendor
1 2 3

\ | /
X

onitor vendor’s sites for the Ia
patches. Download/save patches and
generate vendor-neutral patch
specification files.

Evaluate untrusted target systems oy a
scheduled basis and install patches as
needed.

SafePatchCommand Center / | \
SafePatch SafePatcf SafePatc
Agent Agent Agent
Target Target Target
System 1 System 2 System 3
Figure 1

In addition to collecting patchesom one or morevendors,the SafePatch Command
Center is responsibléor evaluating target systems. This includes downloading and
installing those patches that will bring a system up-to-date. The SafePatch administrator has
full control overthe scheduling of target evaluations as well as the mhiemload and
installation processes. They may request an evaluatimediately orschedule evaluations

on a repeated basis. In short, a systeiministrator is in complete contrahd dictates all
actions that SafePatch is to perform on a system.

The SafePatch Command Cententrolsthe execution of amvaluation. Toevaluate a
system,the Command Center querigem the Agentits operatingsystem, version, and
architecture that it isunning. Itthen collectsall patch specificationsorresponding to the
information thatwas returned fronthe queries. Fronthese patch specifications a list of
directories and files manipulated by the patcforsned. The owner, group, permissions,

and checksum (files only) for each file or directory on the list is checked agairswties,

group, permissions, and checksums of the respective directbley on the targesystem.

This check permits SafePatch to determine which patches are actually installed on the target
system without relying othe system’slocal database. From this information, SafePatch

can determinevhich patches need to be downloaded and installeteotargesystem to

bring it up-to-date The system administratotan then choose to have SafePatch install
patchesimmediately after the evaluatioprocess or at somé&ter time. Thesystem
administrator can also choose not to have SafePatch download and/or install the patches but

IOWAC 2001.008 5

rather simply generate a report indicating which patches are needed tthbsggtem up-
to-date.

The SafePatctAgent responds tocommands and requestsitinted by theSafePatch
Command Center. The Agent is a lightweightcess andises venyittle resources on the
targethost; the majority of thework is performed by theentralizedSafePatch Command
Center.

Secure communications between the Command Center and the Agents wusedb®
protect data from being tampering with and to authenticate sereigasstedThese secure
communications employ digitalsignatures and encryption techniques based on
public/private key technology.

SafePatch Today and Tomorrow

Started as a proof-of-concept effortApril of 1996, SafePatch has flourishaato a fully
functional and extremelgowerful administrative tool thahasbeen successfully deployed
within the DOE and theU.S. Air Force. Lawrencd.ivermore National Laboratory has
developed and maintained an #iprver fafepatch.11nl.gov) containing a complete set

of archived patche$or each of thesupported operatingystems. Forauthentication
reasons, it is recommended that user’'s have SafePatch acquire patches directly from this ftp
site rather than the vendor’s site.

The currentversion of SafePatch provides support for Solars1+ and RedHat Linux
6.0+ systems. Though each of these operating systemfunction as a SafePatélgent,
the Command Center is currently limited to the Solaris operating system.

Since the primary development effdvas concluded, it is envisiondkat the SafePatch
technology will eventually be transferred to an outside agency for further enhancements and
maintenance. Because SafePai¢is developedusing the object-orientecparadigm, it

would be relatively easy and straightforward to providelditional support for other
variants of the Unix operating system.

Conclusion

Automated information processing is destined to play an increasingly important role in our
lives, and it will becomecritically important toassure trust irthese informatiorsystems.
SafePatch can fulfill aentral role inthis assurance with a uniform solution to the
automated authentication amdaintenance ofystem softwareSafePatch will serve to
protect against threats to informatioesources and provide a higgvel of trust to the
systems’ users.

IOWAC 2001.008 6

